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Multifractal nature of stock exchange prices

M. Ausloos1 and K. Ivanova2

1SUPRAS and GRASP, B5, University of Liège, B-4000 Liège, Euroland
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Abstract

The multifractal structure of the temporal dependence of the Deutsche Aktienindex
(DAX) is analyzed. The q-th order moments of the structure functions and the
singular measures are calculated. The generalized Hurst exponent H(q) and the
h(γ(q)) curve indicate a hierarchy of power law exponents. This approach leads
to characterizing the nonstationarity and intermittency pertinent to such financial
signals, indicating differences with turbulence data. A list of results on turbulence
and financial markets is presented for asserting the analogy.
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1 Introduction

The analogy between fluid turbulence and financial markets has been previ-
ously noticed [1,2]. The energy flow in hydrodynamics is supposed to mimic
the information transfer in financial markets, or the entropy variation of the
market [3]. Some hierarchical structures are thought to exist, leading to cas-
cades of information and clusters of buy-sell orders [4,5] and sometimes to
crashes [6]. Surprisingly, more work on ”financial cascades” can be found on
the foreign exchange market time series [7-14] rather than on share prices or
stock market indices. However, since all such financial time series indicate non-
stationarity, a multifractal [15,16] description seems useful [13,14,17-24]. The
goal of this paper is to present original results on the Deutsche Aktienindex
(DAX), obtaining the roughness parameter (H1) and the degree of intermit-
tency (C1). The q-th order moments of the structure functions and the singular
measures are constructed thereof [23-25]. The behaviors are consistent with the
multi-affine properties of other turbulent phenomena [26]. Understanding the
processes that underlie these ”macroscopic” effects remains at the speculative
level. Numerical differences are pointed out. Nevertheless, the nonexhaustive
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list of references is a sufficient argument for asserting the analogy and sug-
gesting further work.

2 Experimental data analysis

The Deutsche Aktienindex (DAX) data used here is from http : //deutsche − boerse.com/
. It goes from Oct. 01, 1959 till Dec. 30, 1998. Let the data consist in a series
y(t), where t is a discrete variable ti, i.e. N = 9818 data points. First, the
scaling range (if any) is found from a detrended fluctuation analysis (DFA)
method [27]. It is found that the scaling range extends up to 256 days, af-
ter which the error bars become too large. The scaling (Hausdorff) exponent
Ha ∼ 0.54 is about the same as that of the DJIA [9]. It is expected that the
self-affine fractal dimension D = 2−Ha. Knowing the scaling range, one can
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Fig. 1. The DAX q-th order structure functions cq(τ) as a function of time lag τ
during Oct. 01, 59 - Dec. 30, 98

reconsider the problem of the time variation of D (or Ha). In the multifrac-
tal approach [9,23,26], one seeks for various scales of self-affinity, through the
so-called q-th order structure functions

cq(τ) = 〈|y(ti+r) − y(ti)|
q〉τ i = 1, 2, . . . , N − r (1)

where only non-zero terms are considered in the average 〈...〉τ taken over
all N − r couples (t, t′) such that τ = |t − t′| is a characteristic time lag,
τ = ti+r − ti, with r ≥ 0, see Fig.1. Assuming a power law dependence of the
structure function cq(τ), the H(q) spectrum is defined through

cq(τ) ∼ τ qH(q) q ≥ 0, (2)
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and is shown in Fig.2, as qH(q); note that Ha = H(1) [22]. The intermittency

of the signal can be studied through a singular measure analysis. Define a
measure ε(1; i) as

ε(1; i) =
|∆y(1; i)|

< ∆y(1; i) >
, i = 0, 1, . . . , N − 1 (3)

where ∆y(1; i) = y(ti+1) − y(ti) is the small-scale gradient field and

< ∆y(1; i) >=
1

N

N−1∑

i=0

|∆y(1; i)|. (4)
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Fig. 2. The DAX qH(q) and K(q) scaling functions for [Oct. 01, 59-Dec. 30, 98]

Next, define a series of ever more coarse-grained and ever shorter fields ε(r; l)
where 0 < l < N − r and r = 1, 2, 4, . . . , N = 2m. The average measure in the
interval [l; l + r] is

ε(r; l) =
1

r

l+r−1∑

l′=l

ε(1; l′) l = 0, . . . , N − r (5)

The scaling properties are then searched for through χq(τ) =< ε(r; l)q >τ∼
τ−K(q) for q ≥ 0. Thereby, the multifractal properties of the DAX signal are
expressed by two scaling functions, H(q) for describing the roughness of the
signal and K(q) its intermittency. The K(q) spectrum (Fig.2) is closely related
to the generalized dimensions Dq = 1 − K(q)/(q − 1) [15,16]. A nonlinearity
of both qH(q) and K(q) implies multifractality. Let C1 = − |dK(q)/dq|q=1. It
seems to be a measure of the information entropy of the system [3]. For the
DAX, C1 = 0.07±0.002, interestingly compared to C1 = 0.27 for the DJIA [9].
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Fig. 3. The h(γ) curve for the DAX data from Oct. 01, 1959 to Dec. 30 1998

Note that both Ha’s = 0.54 ± 0.006 are similar. Let γ(q) = d(qH(q))/dq and
h(γ(q)) = 1 + qγ(q)− qH(q). The function h(γ(q)) is the fractal dimension of
the Cantor dust set of points having the same roughness exponent γ(q) [16].
The h(γ) function acts like the function f(α) in Ref.[16]. The h(γ(q)) curve is
shown in Fig. 3. The error bars are easily estimated from Fig.1 and the above
equations. Note that h(γ(q)) reaches a maximal dimension for some finite γ0

corresponding to the fractal dimension of the signal if it was self-affine [22].

3 Discussion

For a long time, the only available theoretical background to the statistical
behavior of prices was the Efficient Market Theory (EMT). The EMT has
been usually identified with the random walk character of prices (Ha = 0.5,
C1 = 0). In finance papers, Ha > 0.5 values have been reported , -the de-
viations from 0.5 being explained by regulations imposed on the market by
central authorities. However, Ha seems to be often different from 0.5, and C1 is
finite. Thus, one should expect multifractal features indicating that the origin
of scaling laws in financial time series is to be found in exogenous forces that
cover a wide variety of influences. Finally, let us conclude that fluctuations
in DAX and other financial market data time series [8,9] can be compared to
those occurring in turbulence. Analogies with intermittency, cascades, period
doubling [21] can be invoked with Kolmogorov 1/3-law process [28] and the
fractional Brownian motion as basic ideas. Recall that intermittency as in-
troduced in turbulence led to a multifractal description, with Ha = 1/3 and
C1 ∼ 0.05.The above data indicate that the DAX (and DJIA [9]) H1 ∼ 0.5 and
C1 ∼ 0.07 are far away from the turbulence domain H1 ∼ 0.3 and C1 ∼ 0.05.
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Thus there is some analogy, but models should be different!
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Note added in proofs :

A surrogate data analysis has been performed as well. The corresponding
values of qH(q) as found in Fig.1 are 0.05 ± 0.005; 0.12 ± 0.03; 0.19 ± 0.06,
respectively.
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